If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2-39n-18=0
a = 7; b = -39; c = -18;
Δ = b2-4ac
Δ = -392-4·7·(-18)
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39)-45}{2*7}=\frac{-6}{14} =-3/7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39)+45}{2*7}=\frac{84}{14} =6 $
| -12+r=-3 | | H(t)=3t^2+12t-2 | | 20x–15=15x+10 | | -2v+4v=-24 | | 9x-45=63 | | -4+5(6+6r)=266 | | 58=-u/8 | | 1/3x+15=5/6x | | 7x+18=12+5x | | x/2=x+1 | | -24x-45=0.5(26+10x) | | 2x+3x+135=180 | | 3(p-9)=13.5 | | 15/n=5 | | 3k+18=6 | | k-8=14,03 | | x-7/x+5=5/9 | | 3x+1=2x-3(x+1) | | 4.2^x=7 | | (x-4)+x+x+(x+2)=66 | | 24+32+x=103 | | 31=8+r | | 12x+10=8x-17 | | 1/6x+3=15 | | 9a+7=20 | | h+4=6.6 | | 8=40l | | 4.7x+2.8x=9 | | 2x3x=54 | | 2x²-8x-10=0 | | (3x+10)=(4x–15) | | s-5.9=12.9 |